Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

4-[3-(3,4-Dimethoxyphenyl)prop-2-enoyl]phenyl methacrylate and 4-[3-(2-bromophenyl)prop-2-enoyl]phenyl methacrylate

A. Jeyabharathi, ${ }^{\text {a }}$ M. N. Ponnuswamy, ${ }^{\text {a }}$ S. Nanjundan, ${ }^{\text {b }}$ Hoong-Kun Fun, ${ }^{\text {c* }}$ Suchada Chantrapromma, ${ }^{\text {c }} \boldsymbol{+}$ Anwar Usman ${ }^{\text {c }}$ and Ibrahim Abdul Razak ${ }^{\text {c }}$
${ }^{\text {a }}$ Department of Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600025 , India, ${ }^{\text {b }}$ Department of Chemistry, Anna University, Chennai 600025 , India, and ${ }^{\text {c }}$ X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia Correspondence e-mail: hkfun@usm.my

Received 18 July 2001
Accepted 30 October 2001
Online 22 December 2001
Chalcones (α, β-unsaturated ketones) are effective antitumour agents. It has been proved that having halogen or methoxy groups substituted in various positions of the phenyl ring enhances the activity of chalcones many times. The title compounds, $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{O}_{5}$ and $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{BrO}_{3}$, respectively, were chosen for crystallographic study in order to determine their structures and conformations. In both compounds, the keto group is in the s-cis conformation and is almost planar. There are weak intramolecular interactions in both structures.

Comment

Chalcones possess multi-protecting, biochemical, antifungal, antimalarial and antifertility activities. The carbonyl group is a characteristic functional group in chalcones. In recent years, the synthesis of polymers having a photosensitive functional group has been an active field of research in polymer science. Monomers having structures similar to the title compounds, 4-[3-(3,4-dimethoxyphenyl)prop-2-enoyl]phenyl methacrylate, (I), and 4-[3-(2-bromophenyl)prop-2-enoyl]phenyl methacrylate, (II), have been polymerized in solution using freeradical initiators (Balaji et al., 2000; Subramanian et al., 2001). These polymers, containing an α, β-unsaturated carbonyl group, undergo crosslinking upon irradiation with UV light or an electron beam and are being used as photoresistors (Hyder Ali \& Srinivasan, 1997; Rehab \& Salahuddin, 1999). These photosensitive polymers find application in the fields of integrated circuit technology, printing technology and photocurable coatings (Nagamatzu \& Inui, 1977).

[^0]The keto group is in the s-cis conformation in compounds (I) and (II), as can be seen from the $\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9-\mathrm{O} 1$ torsion-angle values of $4.7(3)^{\circ}$ for (I) and $7.2(6)^{\circ}$ for (II). The two phenyl rings make dihedral angles with the keto group of 8.5 (2) and 11.8 (1) ${ }^{\circ}$ for (I), and $4.8(2)$ and $7.6(2)^{\circ}$ for (II). In general, the bond lengths in these conjugated

(I)

(II)
systems are longer than the double bonds and shorter than the single bonds. In both structures, the bond lengths agree with reported values (Carpy et al., 1978). From the torsion angle values $\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 7-\mathrm{C} 8=-176.0(2)^{\circ}, \mathrm{C} 4-\mathrm{C} 7-\mathrm{C} 8-$ $\mathrm{C} 9=177.5(2)^{\circ}, \mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10=-173.2(2)^{\circ}$ and $\mathrm{C} 8-$ $\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 15=-167.2(2)^{\circ}$ in (I), and $\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8=$ $170.6(4)^{\circ}, \mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9=178.9(3)^{\circ}, \mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9-$ $\mathrm{C} 10=-173.8(4)^{\circ}$ and $\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11=8.1(6)^{\circ}$ in (II), it is clear that the unsaturated ketone system is not strictly planar. This deviation from planarity affects the π-electron conjugation. The H atoms at C 7 and C 8 are trans. The opening of the $\mathrm{C} 4-\mathrm{C} 7-\mathrm{C} 8$ angle to 129.5 (2) ${ }^{\circ}$ in (I) and the $\mathrm{C} 6-$

Figure 1
The molecular structure of compound (I) drawn with 30% probability displacement ellipsoids. H atoms are shown as small spheres of arbitrary radii.

Figure 2
The molecular structure of compound (II) drawn with 30% probability displacement ellipsoids. H atoms are shown as small spheres of arbitrary radii.

C7-C8 angle to 127.3 (4) ${ }^{\circ}$ in (II) can be ascribed to the short interatomic non-bonded interaction between atoms H 8 and H3 in (I), which are separated by a distance of 2.309 (2) Å, and the interaction between atoms H 5 and H 8 in (II), which are

Figure 3
Packing diagram of (I) viewed down the a axis.

Figure 4
Packing diagram of (II) viewed down the a axis.
separated by a distance of 2.211 (1) \AA (Tokuno et al., 1986). This non-bonded interaction also produces an appreciable twist about the $\mathrm{C} 4-\mathrm{C} 7$ bond for (I) and the $\mathrm{C} 6-\mathrm{C} 7$ bond for (II), at the expense of the conjugation energy of the system. The exocyclic angles about C10 reveal deviations from normal trigonal values, with a larger $\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11$ angle $\left[124.1\right.$ (2) ${ }^{\circ}$ for (I) and 123.5 (3) ${ }^{\circ}$ for (II)] and a smaller C9-C10-C15 angle $\left[117.6(2)^{\circ}\right.$ for (I) and 118.1 (3) ${ }^{\circ}$ for (II)]. There are two weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ intramolecular interactions in (I) and (II), and one weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{Br}$ interaction in (II) (Tables 2 and 4).

Displacement-ellipsoid plots of the molecules of (I) and (II) are shown in Figs. 1 and 2, respectively. Figs. 3 and 4 show the packing of molecules of (I) and (II), viewed down the a axis in each case.

Experimental

The syntheses of compounds (I) and (II) consist of two steps. 3,4Dimethoxystyryl 4-hydroxyphenyl ketone and 1-bromostyryl 4-hydroxyphenyl ketone were prepared by the Claissen-Schmidt condensation of 3,4-dimethoxybenzaldehyde or 1-bromobenzaldehyde with 4-hydroxyacetophenone in aqueous alcohol. Compounds (I) and (II) were then prepared by reacting 3,4-dimethoxystyryl 4^{\prime}-hydroxyphenyl ketone or 1-bromostyryl 4^{\prime}-hydroxyphenyl ketone in methyl ethyl ketone with methacryloyl chloride in the presence of triethylamine.

Compound (I)

Crystal data
$\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{O}_{5}$
$M_{r}=352.37$
Monoclinic, $C 2 / c$
$a=13.381$ (2) \AA
$b=20.813(2) \AA$
$c=13.881$ (2) \AA
$\beta=109.68(1)^{\circ}$
$V=3640.0(8) \AA^{3}$
$Z=8$
$D_{x}=1.286 \mathrm{Mg} \mathrm{m}^{-3}$
$\mathrm{Cu} K \alpha$ radiation
Cell parameters from 25 reflections
$\theta=4.1-25.0^{\circ}$
$\mu=0.75 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Needle, colourless
$0.3 \times 0.2 \times 0.2 \mathrm{~mm}$

Data collection

Enraf-Nonius CAD-4

$$
h=-2 \rightarrow 16
$$

$k=0 \rightarrow 25$
$l=-17 \rightarrow 16$
3 standard reflections every 200 reflections frequency: 120 min intensity decay: $<0.1 \%$

Table 1
Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$ for (I).

C1-O4	1.362 (3)	C9-C8	1.475 (3)
O5-C2	1.363 (2)	O2-C16	1.344 (3)
O5-C20	1.413 (2)	O2-C13	1.408 (3)
O4-C21	1.426 (3)	C16-O3	1.197 (2)
C9-O1	1.231 (2)		
O4-C1-C6	124.93 (18)	O5-C2-C3	125.13 (17)
O4-C1-C2	115.32 (18)	O5-C2-C1	114.99 (17)
C11-C10-C9	124.07 (18)	C8-C7-C4	129.5 (2)
C15-C10-C9	117.59 (19)		
C15-C10-C9-C8	167.17 (19)	C9-C8-C7-C4	177.5 (2)
O1-C9-C8-C7	4.7 (3)	C5-C4-C7-C8	-176.0 (2)
$\mathrm{C} 10-\mathrm{C} 9-\mathrm{C} 8-\mathrm{C} 7$	-173.18 (19)		

Table 2
Short-contact geometry $\left(\AA{ }^{\circ},{ }^{\circ}\right)$ for (I).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 7-\mathrm{H} 7 \cdots \mathrm{O} 1$	0.93	2.42	$2.784(3)$	103
$\mathrm{C} 18-\mathrm{H} 18 B \cdots \mathrm{O} 2$	0.93	2.34	$2.685(3)$	101

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.054$
$w R\left(F^{2}\right)=0.163$
$S=1.04$
3549 reflections
238 parameters
H -atom parameters constrained

Compound (II)

Crystal data

$\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{BrO}_{3}$	$Z=2$
$M_{r}=371.22$	$D_{x}=1.502 \mathrm{Mg} \mathrm{m}^{-3}$
Triclinic, $P \overline{1}$	Mo $K \alpha$ radiation
$a=7.5272(3) \AA$	Cell parameters from 4174
$b=10.1940(4) \AA$	reflections
$c=11.5780(4) \AA$	$\theta=1.8-29.5^{\circ}$
$\alpha=96.227(1)^{\circ}$	$\mu=2.52 \mathrm{~mm}^{-1}$
$\beta=98.428(1)^{\circ}$	$T=293(2) \mathrm{K}$
$\gamma=108.763(1)^{\circ}$	Block, light yellow
$V=820.54(5) \AA^{3}$	$0.44 \times 0.32 \times 0.12 \mathrm{~mm}$

Data collection

Siemens SMART CCD areadetector diffractometer
ω scans
Absorption correction: empirical (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.404, T_{\text {max }}=0.752$
4721 measured reflections
2840 independent reflections
2355 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.052$
$\theta_{\text {max }}=25.0^{\circ}$
$h=-8 \rightarrow 8$
$k=-12 \rightarrow 8$

Refinement
Refinement on F^{2}
H -atom parameters constrained
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.056$
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0895 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$w R\left(F^{2}\right)=0.146$
$(\Delta / \sigma)_{\max }<0.001$
$S=0.99$
2840 reflections
209 parameters

$$
\begin{aligned}
& w=1 / {\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0922 P)^{2}\right.} \\
&+0.6924 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.27 \mathrm{e}^{-3} \AA^{-3} \\
& \Delta \rho_{\min }=-0.22 \mathrm{e}^{-3}
\end{aligned}
$$

$\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{BrO}_{3}$

$$
Z=2
$$

Triclinic, $P \overline{1}$
$a=7.5272$ (3) Å
$b=10.1940$ (4) A
7 (1) ${ }^{\circ}$
$l=-13 \rightarrow 13$
$\Delta \rho_{\text {max }}=0.58 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-1.08 \mathrm{e}^{-3}$

Table 3
Selected geometric parameters $\left(\AA{ }^{\circ}{ }^{\circ}\right.$) for (II).

$\mathrm{Br} 1-\mathrm{C} 1$	$1.903(4)$	$\mathrm{O} 2-\mathrm{C} 13$	$1.410(5)$
$\mathrm{O} 1-\mathrm{C} 9$	$1.207(5)$	$\mathrm{O} 3-\mathrm{C} 16$	$1.199(5)$
$\mathrm{O} 2-\mathrm{C} 16$	$1.359(5)$	$\mathrm{C} 7-\mathrm{C} 8$	$1.320(5)$
$\mathrm{C} 11-\mathrm{C} 10-\mathrm{C} 9$	$123.6(3)$	$\mathrm{C} 15-\mathrm{C} 10-\mathrm{C} 9$	$118.2(4)$
$\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$	$170.6(4)$	$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$	$-173.8(4)$
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$178.9(3)$	$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11$	$8.1(6)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9-\mathrm{O} 1$	$7.2(6)$		

Table 4
Hydrogen-bonding geometry ($\mathrm{A},{ }^{\circ}$) for (II).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
C7-H7A $\cdots \mathrm{Br} 1$	0.93	2.71	$3.175(4)$	112
C7-H7A O1	0.93	2.44	$2.781(5)$	101
C18-H18C O 2	0.93	2.37	$2.700(6)$	100

After checking their presence in a difference map, all H atoms were fixed geometrically and allowed to ride on their attached atoms $(\mathrm{C}-\mathrm{H}=0.93$ and $0.96 \AA)$.

For compound (I), data collection: CAD-4 Software (EnrafNonius, 1989); cell refinement: CAD-4 Software; data reduction: SDP (Frenz, 1978); program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: ZORTEP (Zsolnai, 1997); software used to prepare material for publication: PARST (Nardelli, 1995) and PLATON (Spek, 1990).

For compound (II), data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: $S H E L X T L$; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 1990).

AJ thanks the University Grants Commission for the award of a teacher fellowship under FIP. The authors would like to thank the Malaysian Government and Universiti Sains Malaysia for research grant R\&D No. 305/PFIZIK/610942.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: DA1204). Services for accessing these data are described at the back of the journal.

References

Balaji, R., Subramanian, K., Nanjundan, S. \& Rami Reddy, A. V. (2000). J. Appl. Polym. Sci. 72, 1412-1418.
Carpy, A., Leger, J. M. \& Nuhrich, A. (1978). Cryst. Struct. Commun. 7, 361364.

Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Frenz, B. A. (1978). The Enraf-Nonius CAD-4 SDP - a Real-Time System for Concurrent X-ray Data Collection and Crystal Structure Solution. Computing in Crystallography, edited by H. Schenk, R. Olthof-Hazekamp, H. van Koningsveld \& G. C. Bassi, pp. 64-71. Delft University Press.

Hyder Ali, A. \& Srinivasan, K. V. (1997). Polym. Int. 43, 310-316.
Nagamatzu, G. \& Inui, H. (1977). Photosensitive Polymers. Kodansha: Tokyo, Japan.
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Rehab, A. \& Salahuddin, N. (1999). Polymer, 40, 2197-2207.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1996). SAINT and SMART. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Spek, A. L. (1990). Acta Cryst. A46, C-34.
Subramanian, K., Nanjundan, S. \& Rami Reddy, A. V. (2001). Eur. Polym. J. 37, 691-698.
Tokuno, K., Mutsui, M., Miyoshi, F., Asao, Y. \& Ohashi, T. (1986). Acta Cryst. C42, 85-88.
Zsolnai, L. (1997). ZORTEP. University of Heidelberg, Germany.

[^0]: \dagger Permanent address: Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand.

